engineering h
proceedings an
Proceeding Paper

An Efficient Approach for Mining High Average-Utility Itemsets

in Incremental Database

T

Ye-In Chang !, Chen-Chang Wu ?* and Hsiang-En Kuo !

check for

updates
Academic Editors: Teen-Hang Meen,
Shu-Han Liao and Cheng-Fu Yang

Published: 5 September 2025

Citation: Chang, Y.-I; Wu, C.-C,;
Kuo, H.-E. An Efficient Approach for
Mining High Average-Utility Itemsets
in Incremental Database. Eng. Proc.
2025, 108, 32. https://doi.org/
10.3390/ engproc2025108032

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
changyi@mail.cse.nsysu.edu.tw (Y.-1.C.); anderson40205@gmail.com (H.-E.K.)

Department of Biotechnology and Green Industry, Fooyin University, Kaohsiung 831, Taiwan

* Correspondence: pt335@fy.edu.tw

* Presented at the 2025 IEEE 5th International Conference on Electronic Communications, Internet of Things
and Big Data, New Taipei, Taiwan, 25-27 April 2025.

Abstract

Traditional high-utility itemset (HUI) mining methods tend to overestimate utility for long
itemsets, leading to biased results. High average-utility itemset (HAUI) mining addresses this
problem by normalizing utility with itemset length. However, uniform utility thresholds fail to
account for varying item importance. Recently, HAUI mining with multiple minimum utility
thresholds (MMU) has been used for flexible utility evaluation. While the generalized HAUIM
(GHAUIM) algorithm performs well, it requires two database scans and is limited to static
datasets. Therefore, we developed a novel tree-based method that scans the database only once
to improve efficiency by reducing storage and eliminating costly join operations. Additionally,
pruning strategies and incremental updates were introduced to enhance scalability. The
developed method outperformed GHAIM in efficiency.

Keywords: data mining; high average utility itemset mining; incremental mining; multiple
mini-mum utility thresholds

1. Introduction

High utility pattern mining (HUPM) is widely used in stock market analysis, commod-
ity market evaluation, and medical data processing. Unlike traditional frequent itemset
mining (FIM), which considers only frequency, HUPM incorporates both quantity and
profit. However, it does not account for pattern length, which misleads results. For exam-
ple, in a store where most customers buy pencils, erasers, and rulers, a wealthy customer
making a large purchase that includes apples and milk could distort the results. Since this
transaction has high utility, HUPM may incorrectly classify the entire itemset as meaningful.
However, the key pattern should consist only of pencils, erasers, and rulers, as they are
commonly bought together. High average utility pattern mining (HAUPM) addresses this
issue by refining meaningful pattern detection.

Despite its benefits, HAUPM has a major limitation, as it applies a single minimum
high-utility threshold to all items, which is problematic due to the diversity in product
attributes. In retail, items vary in price (e.g., diamonds vs. ceramics), purchase frequency
(e.g., milk vs. refrigerators), and profit margin (e.g., gold vs. clothes). Using a single
threshold biases evaluations. If set too high, important patterns may be missed; if too low,
too many irrelevant patterns may be found. Integrating HAUPM with multiple minimum
average utility threshold values (MATV) improves decision-making in pricing, promotions,
and product placement.

Eng. Proc. 2025, 108, 32

https:/ /doi.org/10.3390/engproc2025108032

https://doi.org/10.3390/engproc2025108032
https://doi.org/10.3390/engproc2025108032
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://doi.org/10.3390/engproc2025108032
https://www.mdpi.com/article/10.3390/engproc2025108032?type=check_update&version=3

Eng. Proc. 2025, 108, 32

20f12

Algorithms [1-3] have been developed for mining high average-utility patterns, but
they rely on user-defined thresholds, which affect performance and accuracy. Multiple
utility thresholds are introduced to handle item diversity [4-7]. However, existing algo-
rithms often sort thresholds and average-utility upper bound (AUUB) values inconsistently,
leading to inefficiencies. The GHAIM algorithm [7] addresses this problem by introducing
the suffix minimum average utility (SMAU) and tighter upper bounds but is limited to
static databases and requires multiple scans.

To overcome the previous problems, we developed a novel algorithm that scans the
database once and constructs a TUR-Tree structure for efficient storage and retrieval of
transactions. By leveraging bit strings, the algorithm identifies itemsets without extra item-
joining operations. Additionally, we introduced a tighter upper bound than the eubr value
in GHAIM [7], enhancing pruning efficiency. For incremental databases, re-scanning data
is costly. The algorithm developed in this study maintains HAUI and non-HAUI candidate
lists to track promising patterns dynamically. The developed TURHAIM algorithm is more
efficient than GHAIM, making it superior for high average-utility pattern mining.

The remainder of this paper is structured as follows: Section 2 provides a review
of high average-utility pattern mining algorithms and multiple minimum threshold ap-
proaches applied to HAUPM. Section 3 introduces the proposed algorithm in detail.
Section 4 presents performance evaluations and comparisons with the GHAIM algo-
rithm [7]. Finally, Section 5 concludes the article.

2. Algorithms for High Average Utility Itemsets (HAUIs) with Multiple
Maximum Transmission (MMUT) Units

Various algorithms have been developed for mining HAUIs. However, most existing
methods do not take multiple minimum thresholds into account. We designed algorithms
for discovering high average utility itemsets and incorporating multiple minimum utility
(MMU) thresholds for high-utility itemset mining.

2.1. TUB-HAUPM Algorithm

The tighter upper bound-high average utility pattern mining (TUB-HAUPM) algo-
rithm [2], proposed by Wu et al., reduces the search space in high average-utility pattern
mining by employing upper-bound constraints. Traditionally, three common upper bounds
are used: the average utility upper bound, a looser upper bound, and a revised tighter
upper bound. However, this algorithm introduces two even tighter upper bounds, the
maximum following utility upper-bound (MFUUB) and the Top-k transaction-maximum
utility upper-bound (KRTMUUB), to efficiently prune unpromising itemsets at an early
stage. In the first database scan, the algorithm computes the AUUB for each item. Items
with AUUB values below the threshold are eliminated. The second database scan then sorts
transactions in ascending order based on AUUB values. During the exploration stage, the
transaction-rival tight upper bound (TRTUB) is determined as the minimum of MFUUB
and KRTMUUB. If TRTUB falls below the threshold, its supersets are not further explored.
This process continues until all HAUIs are identified.

The multiple-threshold-based efficient mining of high average utility itemsets (MEMU)
algorithm [6], proposed by Lin et al., addresses the limitations of the high utility itemset
mining with multiple minimum average-utility thresholds (HUIM-MMAU) algorithm [5],
which requires multiple database scans and generates an excessive number of candidate
itemsets. To enhance efficiency in discovering HAUIs, MEMU utilizes the compact average-
utility list (CAU-list) and the estimated average-utility matrix (EAUM) structure.

The algorithm consists of three stages. In the first stage, the database is scanned once
to compute AUUB values. The multiple minimum high average-utility table (MAUTable)

Eng. Proc. 2025, 108, 32

3o0f12

is then checked, and the smallest threshold is identified as the least minimum high average-
utility count (LMAU). Items with AUUB values below LMAU are removed from the
database. A second scan updates AUUB values and sorts the database in ascending
order based on thresholds. The second stage begins the mining process, where EAUM
is applied as a pruning strategy. If the EAUM value of an itemset exceeds LMAU, the
algorithm proceeds to generate three itemsets and constructs the CAU-list. In the final
stage, the CAU-list is further refined, and the length-average (LA) pruning strategy is
applied to eliminate unpromising candidates early. This process continues until all HAUIs
are efficiently identified.

2.2. Generalized High Average-Utility Itemset Mining (GHAIM) Algorithm

The GHAIM algorithm [7], proposed by Sethi et al., addresses the limitations of previous
approaches in high average-utility pattern mining. The MEMU algorithm [6] improved upon
HUIM-MMAU [5] by reducing database scans and candidate generation. Meanwhile, the
MHUI algorithm [4] introduced generalized pruning techniques for the multiple minimum
threshold method without sorting user-defined thresholds. However, MHUI focused on high
utility patterns (HUPs) rather than HAUIs. GHAIM effectively overcomes the challenges
faced by these earlier strategies [4,6]. In the first database scan, GHAIM computes AUUB
values for each item and sorts them in ascending order. A second scan updates AUUB values,
and items with AUUB values below the suffix minimum average-utility (SMAU) threshold
are removed, applying the AUUB pruning strategy. After this step, two key data structures are
created: the revised average utility list (RAUL) and the estimated average-utility co-occurrence
matrix (EACM), both based on the sorted revised database.

3. Developed Algorithm

A tree-based algorithm was developed to minimize database scans while eliminating
the additional time required for the join process and mine HAUISs in continuously growing
databases with multiple minimum thresholds.

3.1. Basic Ideas

Table 1 illustrates a database used in this study. The notation Q(I, Ty,) represents the
quantity of item I in transaction Ty. For instance, for item b in transaction Ts, Q(b, Ts) = 2.
The profit of item I is denoted as Pr(I). As shown in Table 2, the profit table indicates
Pr(a) = 3. Using this, the utility of item I in a transaction Ty, represented as uy(l, Tn), is
calculated. For an itemset, the total utility is the sum of the individual item utilities. Unlike
traditional utility, in average utility calculation, the length of the itemset is considered.
When evaluating a single item I, its average utility per transaction is simply its utility.

(LT
auyg (I/ Tn) == M = Uy (I/ Tn) (1)
Table 1. Database used in this study.

TID (Item, Quantity)

T1 (a,5) (b, 2) (e, 2) (£, 1)

T2 (@,2)(d 1) (e, 1) (f, 2)

T3 (c,1)(d,2) (£ 1)

T4 (,1)(d,3)(f 1)

T5 @ 2) (b,2) (d, 1) (e, 1) (£ 2)

Eng. Proc. 2025, 108, 32 40f12

Table 2. Profit table.

Item Profit
a 3
b 1
c 2
d 2
e 1
f 1

For an itemset X, the real length of X is considered, and the average utility is calculated as

aw (I, Tp) = uh(|)>(('Tn) 2)

To determine the total average utility across the entire database, we sum the average
utility values from all transactions where the item or itemset appears. For example, for
item a, we compute the following.

aup(a) = aug(a, T1) + aug(a, T2) + aug(a, T4) + aug(a, Ts) 3)
Similarly, for itemset ab:
aup(ab) = auy(ab, T1) + aug(ab, Ts)

To determine whether an item or itemset qualifies as HAUI, we compare its total average
utility (AUD) with its corresponding threshold from the MATYV table, as shown in Table 3.

Table 3. MATV of each item.

Item MATV
a 7
b 6
c 7
d 5
e 9
f 8

For example, given MATV(a) =7 and AUD(a) = 30, itemset {a} (a 1-itemset) is classified
as HAUL For itemset {ab}, the threshold is calculated as the average of the individual
MATYV values.

_ MATV(a) + MATV(b) 7+6

MATV (ab) . 5 =65 (4)

Since AUD(ab) = 12.5 is greater than MATV(ab) = 6.5, itemset {ab} is also considered
an HAUL

In the mining process of HAUIs, an upper bound is defined to reduce the search space.
The most commonly used upper bound is the AUUB value. It is calculated by summing
the TMU values of all transactions where the itemset X appears. Table 4 displays all the
AUUB values used in the database. TMU represents the highest utility value within a given

Eng. Proc. 2025, 108, 32

50f12

transaction Ty,. This upper bound helps eliminate unpromising itemsets early, improving
mining efficiency.

Table 4. AUUB value of each item.

Item auub
a 33
b 21
C 4
d 22
e 27
f 37

After calculating AUUB for all items, we sort the item list in descending order based
on their AUUB values. This sorting ensures that items with higher upper bounds are
prioritized during the mining process. Next, the algorithm constructs a TUR-Tree following
the order defined by the sorted item list. The TUR-Tree structure efficiently organizes
transaction data, reducing the search space and improving mining performance.

In the TUR-Tree structure, the remaining maximum utility (RMU) excluding itemset X
(rmue) represents the highest utility among all items in a transaction, excluding those in
itemset X. For example, in transaction Ty, after sorting, we have T, = (d, e, a, f). The RMU
of itemset {d, e} in T5 is calculated as follows.

rmue(de, Tp) = max(uti(a), uti(f)) = max(6,2) =6 (5)

Another important function is the suffix minimum average-utility (SMAU), which sets
a minimum threshold by comparing MATV values of itemsets and their succeeding items
in the sorted order. If we compute SMAU(ba), we consider the MATV values of b, a, and
any items appearing after itemset {b, a}, which is only item f.

SMAU(ba) = min(MATV (b), MATV (a), MATV(f)) = min(6,7,8) = 6 6)

3.2. Data Structure

Based on three input datasets that include database DB, the profit table, and the MATV
table (Tables 1-3), we developed six key data structures for the mining process, including
(1) the item-based table, (2) the transaction set table, (3) the AUUB table, (4) the sorted item
list, (5) the SMAU table, and (6) the EMURUM table.

3.2.1. Item-Based Table

The item-based table is implemented using a HashMap (in Table 5), a data structure in
Java [8]. When constructing the TUR-Tree, items, transaction ID (TID), utility, and RMUE
are inserted sequentially based on the sorted item list, eliminating the need for re-sorting.
Unlike the GHAIM algorithm, which requires a sorting step, the developed TURHAIM
algorithm streamlines the process. The item-based table stores the utility of each item
(itemy) in each transaction (T;). For instance, the utility of item a in transaction Tj is 15.
This table also helps construct the transaction set table and remains permanently in use. In
an incremental mining process, if new data change the item order, the item-based table is
essential for reconstructing the TUR-Tree. It efficiently stores utility values for each item
within specific transactions (Th).

Eng. Proc. 2025, 108, 32 6 of 12

Table 5. Item-based table.

TID\Item a b c d e f
Ty 15 2 0 0 2 1
T, 6 0 0 2 1 2
T; 0 0 2 4 0 1
Ty 3 0 0 6 0 1
Ts 6 2 0 2 1 2

3.2.2. Transaction Set Table

The transaction set table (Table 6), is derived from the item-based table. It records
the transactions in which each item appears based on its utility value. If an item’s utility
is greater than 0, the item is present in that transaction, and its TID is included in the set.
Conversely, if the utility value is 0, the item does not exist in that transaction and will not
appear in the set. The primary function of the transaction set table is to locate transactions
containing specific itemsets. It also plays a crucial role in the pruning strategy, as an empty
transaction set indicates that the corresponding itemset is no longer relevant for further
searching. The detailed process of utilizing the transaction set table in mining will be
discussed later.

Table 6. Transaction set table.

Itemset\ Transaction Set The Transactions Where the Itemset Appears
a Tq, Ty, Ta, T
b Ty, Ts
c Ts
d T5, T3, Ty, Ts
e T1,T>,Ts
f T1,T>,T3, Ty, Ts

3.3. Construction of TUR-Tree

The TUR-Tree is built from the item-based table by inserting items in the order of the
sorted item list. In insertion, items are added following the sorted order of AUUB values,
maintaining the same transaction within the same path. The TUR-Tree consists of four
types of links as shown in Figure 1.

e Child link: Connects a parent node to its child nodes;
Parent link: Establishes the hierarchical structure;
Next link: Helps locate the next occurrence of the same item for mining;

Header table link: Serves as the starting point for the mining process.

Figure 1 shows the construction of the TUR-Tree after the insertion of sorted transactions.

Eng. Proc. 2025, 108, 32 7 of 12

>
S| fd util rmue
TUR-Tree 1 1 0
-2 2 0
-— -
3 I 0
-
Header table L & . \
- - tid util rmue 4 ! o
item link \
1 15 1 K ’ 0
f ¢ \
a o — |
. 4 3 1 tid util rmue
e jo-
2 s 6 I ! 3 4 1
- 1
' | ' T
b . —Y— | PP
tid util | rmue L v | dia wtil rmue
1 2 15 e p 3
I 6 il
1
1 6 N d I tid util | rmue
____________ S S— B s e
* The updated part™, b]
= === & Child link | tid util rmue - I ©
w——2 Parent link 1 2 15 o T b ' 4
Sao | vd urd rmue
----- > Next link ,
els : 6
@essssssarseacen +® leader table link

Figure 1. TUR-Tree after the insertion of sorted transactions.

3.4. Pruning Strategy

The developed TURHAIM algorithm incorporates multiple pruning strategies to
enhance efficiency, including the following.

e AUUB pruning strategy [7]: Eliminates itemsets whose AUUB values fall below the
SMAU value.

e Transaction set pruning strategy: Uses the transaction set table to quickly determine if
an itemset is empty, avoiding unnecessary searches.

e TURUB pruning strategy [2,7]: Applies the Transaction-Rival Upper Bound (TURUB)
to discard unpromising candidates early.

e Estimated maximum between utility and remaining utility matrix (EMURUM) pruning
strategy [6,7]: Utilizes EMURUM to further reduce the search space.

By integrating these strategies, the algorithm efficiently identifies HAUIs while mini-
mizing computation.

3.5. Mining Process for Static Database

Figure 2 presents the flowchart of the static database mining step. The developed
TURHAIM algorithm begins with a depth-first search (DFS) following the ascending order
of AUUB values. Using the database (Table 1), we analyzed itemset daf. The processing
order is [b, d, e, a, f] since item ¢ has been pruned using the AUUB pruning strategy.
First, we examine the TID check set to determine whether it is empty. If it was empty, the
transaction set pruning strategy skips searching the TUR-Tree. However, since TID check
set = {T», T4, T5}, we mined. We locate item d in the header table and follow its link to find
the first node where d appears. The matching TIDs are {T, T5}, indicating a non-empty
intersection. We then accumulate the utility of itemset daf for T, and Ts. Next, using the
parent link, we locate nodes a and f, continuing the accumulation.

The last visited node is f, where we compute RMUE for T, and T, both of which are
0. Since f is the last item in daf, we backtrack to find the next d node. After processing
T, and T5, we remove them from the TID check set and verify if it is empty. Next, we
continue searching for item d in the next link that intersects with our TID check set. We
find TID = 4 in node d and follow the parent link to locate nodes a and f for TID = 4. After

Eng. Proc. 2025, 108, 32

8of 12

processing, we remove T4 from the TID check set, which now becomes empty. Since there
are no remaining TIDs to process, we stop searching for further d nodes.

Scan dataset

Store in the
promising item list

| Calculate the transaction
set of itemset X'and ¥

Calculate the intersection
of the transaction sets of
itemset X and itemset Y

Find the itemset X in TUR-
Tree to calculate utility value
and rmue value

intersection
is not null

Store itemset X and its Store itemset X and
average utility to non- its average utility to
HAUI candidate list HAUT list

If
TURUB(X) =
SMAU (X)

No

EMURUM(X,Y) =
leastMATV

Combine X'and I

Figure 2. Flowchart of static database mining step.

Then, we compute the TURUB value for itemset daf. Since item f is the last item in daf
and has the largest AUUB in the sorted list, its RMUE is 0. Therefore, rmue(daf, T;) = 0,
rmue(daf, T4) = 0, rmue(daf, Ts) = 0, leading to TURUB(daf) = 0.

3.6. Mining Process for Incremental Database

In incremental mining, two possible scenarios exist: unchanged order and changed
order. Before discussing these cases, we first define two special item types to reveal items
and skippable items. A revealed item has been previously pruned due to the AUUB
pruning strategy, but as new data increases its AUUB value, it is no longer pruned and is
removed from the promising item list. A skippable item is present in the original dataset
but does not appear in the updated data. In certain cases, the item is skipped during a
depth-first search, optimizing the mining process. When the item order remains unchanged,
only limited data structures need to be updated, including the item-based table, AUUB
table, HAUI List, Non-HAUI Candidate List, TURUB List, and EMURUM. In this case,

Eng. Proc. 2025, 108, 32

9of 12

the TUR-Tree remains unaffected, which significantly improves efficiency. Compared with
situations where the order changes, much of the previously created data can still be used,
leading to faster performance.

When the item order changes, more data structures are affected, requiring significant
updates. In this case, the TURUB List becomes unusable, and the TUR-Tree must be
reconstructed to reflect the new order. Since the previous mining structure is no longer
valid, the system must rebuild key data structures, leading to a higher computational cost
compared to the unchanged order scenario. Despite this, updating the item-based table,
AUUB table, HAUI List, Non-HAUI Candidate List, and EMURUM table remains essential
for accurate incremental mining. When the order changes, the originally stored TURUB
List becomes invalid because modifying its values directly would lead to incorrect results.
As a result, the TURUB List cannot be used, and the TUR-Tree must be reconstructed to
match the new order. After updating the necessary data structures—including the item-
based table, AUUB table, HAUI List, Non-HAUI Candidate List, and EMURUM table—the
mining process begins. The steps for mining remain similar to those in static database
mining, with one key difference: determining HAUI must follow the process outlined in
Figure 3. This is because the HAUI List and Non-HAUI Candidate List already contain
values from previous mining iterations.

Check order

Go to TUR-
Tree to find
itemset and
calculate its
No util value
and rmue
value to
determine
whether
itemset is
HAUI

In our list

Calculate the rmue value
of old data. Calculate the
util value and rmue
value of the new data.
Update average utility.

!

Calculate the util value
and rmue value of the new
data. Update average utility.

Calculate the rmue value
of old data. Calculate the
util value and rmue
value of the new data.
Update average utility.

Calculate the util value
and rmue value of the new
data. Update average utility.

Move this Yes
itemset to HAUT
List.

Move this itemset to
HAUI List.

No

Do not do anything.

Do not do anything.

Figure 3. Determination of whether an itemset is in the HAUI List, the Non-HAUI Candidate List, or
not in the above two lists.

Eng. Proc. 2025, 108, 32

10 of 12

4. Performance Evaluation

We evaluated the performance of the developed TURHAIM algorithm by comparing
it with the GHAIM algorithm [7] using both synthetic and real-world datasets.

4.1. Synthetic Datasets

In the synthetic dataset, the profit values and quantities of items were randomly
assigned within the range of 1 to 15. The dataset was generated based on three key
parameters: (1) the number of different items (ND), (2) total number of transactions (TN),
and (3) the maximum number of items per transaction (MT). By adjusting these parameters,
we controlled the dataset’s density.

To evaluate the efficiency of the proposed TURHAIM algorithm, we compared its
running time with the GHAIM algorithm using synthetic datasets. Specifically, we ex-
perimented with the datasets: NIT200TN100000MT15. Figure 4a shows that TURHAIM
outperformed GHAIM in running time on a static synthetic database, demonstrating higher
efficiency. Then, we analyzed the performance of NIT200TN100000MT15 in an incremental
database setting. We examined how running time changes with variations in the inserted
TN. Figure 4b shows the processing time of our algorithm is consistently lower than that of
the GHAIM algorithm.

Synthetic NIT200TN100000MT 15 (Static) Synthetic NIT200TN100000MT15 (Incremental)
300 300
é =0 —~-TURHAIM é =0
(&3 (5]
izm -=GHAIM f}v‘;m ——TURHAIM
E 150 “E’ 150 =-<=GHAIM
- =
D100 Dm0 /“\"—/
£ =
c c
g g =
0 o
20,000 40,000 60,000 80,000 100,000 2 3 4 5 6
Data Size Inserted TN
(a) (b)

Figure 4. Comparison of the running time between our algorithm and the GHAIM algorithm based on dif-
ferent data sizes using the synthetic data listed as (a) NIT200TN100000MT15; (b) NIT200TN100000MT15.

4.2. Real Datasets

To evaluate the robustness of the TURHAIM algorithm, experiments were conducted
on the Connect dataset [4,9]. Figure 5 demonstrates this trend in the connect real database,
where the TURHAIM algorithm consistently outperformed the GHAIM algorithm in
running time. The performance gap widens as the data size increases.

connect (Static)
2500

~-TURHAIM
2000 + -+=GHAIM

£1500 4

)

Seconds

Running Time
(42 o
o o
o o

o

40,000 47,000 54,000 61,000 67,557
Data Size

Figure 5. Comparison of the running time between our algorithm and the GHAIM algorithm based
on different data sizes using the real data of Connect.

Eng. Proc. 2025, 108, 32 11 of 12

Next, we analyzed the performance of the Connect dataset under the incremental
database. As shown in Figure 6, the TURHAIM algorithm consistently outperformed the
GHAIM algorithm in terms of running time.

connect (Incremental)
3000

--TURHAIM
==GHAIM

- - NN
o u O O
S © © o©o
S © o© o

Running Time (Seconds)

2 3 - 5 6
Inserted TN

Figure 6. Comparison of the running time between our algorithm and the GHAIM algorithm using
the real data of Connect under varying values of the inserted TN.

5. Conclusions

In this study, we developed a TURHAIM algorithm to discover high average utility
itemsets with multiple minimum thresholds in an incremental database. The TURHAIM
algorithm requires only a single database scan. When new data are inserted, provided the
order remains unchanged, only the updated portion of the database is scanned, avoiding
the entire dataset scan. We compared the performance of the TURHAIM algorithm with
the GHAIM algorithm using static and incremental databases. The TURHAIM algorithm
outperformed the GHAIM algorithm in terms of efficiency.

Author Contributions: Conceptualization, Y.-1.C.; methodology, H.-E.K.; writing—original draft
preparation, H.-E.K.; writing—review and editing, C.-C.W. and H.-E.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported in part by the Office of Research and Development, National
Sun Yat-sen University under Grant No. 14DS02.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

Gao, MJ; Lin,].X.; Wu,].W. An Efficient Algorithm for High Average Utility Itemset Mining with Buffered Average Utility-List.
In Proceedings of the 7th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China,
18 December 2020.

Wu,] M.-T;; Lin,].C.-W.,; Pirouz, M.; Fournier-Viger, P. Fournier-Viger, TUB-HAUPM: Tighter Upper Bound for Mining High
Average-Utility Patterns. IEEE Access 2018, 6, 18655-18669. [CrossRef]

Yun, U,; Nam, H.; Kim, J.; Kim, H.; Baek, Y.; Lee, J.; Yoon, E.; Truong, T.; Vo, B.; Pedrycz, W. Efficient Transaction Deleting
Approach of Pre-Large Based High Utility Pattern Mining in Dynamic Databases. Future Gener. Comput. Syst. 2020, 103, 58-78.
[CrossRef]

Krishnamoorthy, S. Mining Top-k High Utility Itemsets with Effective Threshold Raising Strategies. Expert Syst. Appl. 2019, 117,
148-165. [CrossRef]

Krishnamoorthy, S. Efficient Mining of High Utility Itemsets with Multiple Minimum Utility Thresholds. Eng. Appl. Artif. Intell.
2018, 69, 112-126. [CrossRef]

Lin,].C.-W,; Ren, S.; Fournier-Viger, P. MEMU: More Efficient Algorithm to Mine High Average-Utility Patterns with Multiple
Minimum Average-Utility Thresholds. IEEE Access 2018, 6, 7593-7609. [CrossRef]

https://doi.org/10.1109/ACCESS.2018.2820740
https://doi.org/10.1016/j.future.2019.09.024
https://doi.org/10.1016/j.eswa.2018.09.051
https://doi.org/10.1016/j.engappai.2017.12.012
https://doi.org/10.1109/ACCESS.2018.2801261

Eng. Proc. 2025, 108, 32 12 of 12

7. Sethi, KK.; Ramesh, D. High Average-Utility Itemset Mining with Multiple Minimum Utility Threshold: A Generalized Approach.
Eng. Appl. Artif. Intell. 2020, 96, 103933-103948. [CrossRef]

8. Sciore, E. Gennick. In Java Program Design; Springer: Berlin/Heidelberg, Germany, 2019.

9. Fournier-Viger, P; Lin, J.C.; Gomariz, A.; Gueniche, T.; Soltani, A.; Deng, Z.; Lam, H.T. The SPMF Open-Source Data Mining
Library Version 2. In Proceedings of the 19th European Conference on Principles of Data Mining and Knowledge Discovery
(PKDD 2016) Part III, Riva del Garda, Italy, 19-23 September 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.engappai.2020.103933

	Introduction
	Algorithms for High Average Utility Itemsets (HAUIs) with Multiple Maximum Transmission (MMUT) Units
	TUB-HAUPM Algorithm
	Generalized High Average-Utility Itemset Mining (GHAIM) Algorithm

	Developed Algorithm
	Basic Ideas
	Data Structure
	Item-Based Table
	Transaction Set Table

	Construction of TUR-Tree
	Pruning Strategy
	Mining Process for Static Database
	Mining Process for Incremental Database

	Performance Evaluation
	Synthetic Datasets
	Real Datasets

	Conclusions
	References

